An Efficient Algorithm for the Separable Nonlinear Least Squares Problem
نویسندگان
چکیده
منابع مشابه
An Efficient Algorithm for the Separable Nonlinear Least Squares Problem
The nonlinear least squares problem miny,z‖A(y)z + b(y)‖, where A(y) is a full-rank (N + `)× N matrix, y ∈ Rn, z ∈ RN and b(y) ∈ RN+` with ` ≥ n, can be solved by first solving a reduced problem miny‖ f (y)‖ to find the optimal value y∗ of y, and then solving the resulting linear least squares problem minz‖A(y∗)z + b(y∗)‖ to find the optimal value z∗ of z. We have previously justified the use o...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملEfficient computational schemes for the orthogonal least squares algorithm
The orthogonal least squares (OM) algorithm is an efficient implementation of the forward selection method for subset model selection. The ability to find good subset parameters with only a linearly increasing computational requirement makes this method attractive lor practical implementations. In this correspondence, we examine the computational complexity of the algorithm and present a prepro...
متن کاملA Stable and Efficient Algorithm for the Indefinite Linear Least-Squares Problem
We develop an algorithm for the solution of indefinite least-squares problems. Such problems arise in robust estimation, filtering, and control, and numerically stable solutions have been lacking. The algorithm developed herein involves the QR factorization of the coefficient matrix and is provably numerically stable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algorithms
سال: 2017
ISSN: 1999-4893
DOI: 10.3390/a10030078